skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ray, Anupam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The memory burden effect is an explicit resolution to the information paradox by which an evaporating black hole acquires quantum hair, which then suppresses its rate of mass loss with respect to the semiclassical Hawking rate. We show that this has significant implications for particle dark matter that captures in neutron stars and forms black holes that go on to consume the host star. In particular, we show that constraints on the nucleon scattering cross section and mass of spin-0 and spin- 1 / 2 dark matter would be extended by several orders of magnitude. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. WIMP-type dark matter may have additional interactions that break baryon number, leading to induced nucleon decays which are subject to direct experimental constraints from proton decay experiments. In this work, we analyze the possibility of continuous baryon destruction, deriving strong limits from the dark matter accumulating inside old neutron stars, as such a process leads to excess heat generation. We construct the simplest particle dark matter model that breaks the baryon and lepton numbers separately but conserves B L . Virtual exchange by DM particles in this model results in dinucleon decay via n n n ν ¯ and n p n e + processes. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. We study ν μ ν s and ν ¯ μ ν ¯ s mixing in the protoneutron star (PNS) created in a core-collapse supernova (CCSN). We point out the importance of the feedback on the general composition of the PNS in addition to the obvious feedback on the ν μ lepton number. We show that for our adopted mixing parameters δ m 2 10 2 keV 2 and sin 2 2 θ consistent with the current constraints, sterile neutrino production is dominated by the Mikheyev–Smirnov–Wolfenstein conversion of ν ¯ μ into ν ¯ s and that the subsequent escape of ν ¯ s increases the ν μ lepton number, which in turn enhances muonization of the PNS primarily through ν μ + n p + μ . While these results are qualitatively robust, their quantitative effects on the dynamics and active neutrino emission of core-collapse supernovae should be evaluated by including ν μ ν s and ν ¯ μ ν ¯ s mixing in the simulations. Published by the American Physical Society2024 
    more » « less
  4. Sunlike stars can transmute into comparable mass black holes by steadily accumulating heavy nonannihilating dark matter particles over the course of their lives. If such stars form in binary systems, they could give rise to quasi-monochromatic, persistent gravitational waves, commonly known as continuous gravitational waves, as they inspiral toward one another. We demonstrate that next-generation space-based detectors, e.g., Laser Interferometer Space Antenna (LISA) and Big Bang Observer (BBO), can provide novel constraints on dark matter parameters (dark matter mass and its interaction cross-section with the nucleons) by probing gravitational waves from transmuted sunlike stars that are in close binaries. Our projected constraints depend on several astrophysical uncertainties and nevertheless are competitive with the existing constraints obtained from cosmological measurements as well as terrestrial direct searches, demonstrating a notable science case for these space-based gravitational wave detectors as probes of particle dark matter. Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> Strongly-interacting dark matter can be accumulated in large quantities inside the Earth, and for dark matter particles in a few GeV mass range, it can exist in large quantities near the Earth’s surface. We investigate the constraints imposed on such dark matter properties by its upscattering by fast neutrons in nuclear reactors with subsequent scattering in nearby well-shielded dark matter detectors, schemes which are already used for searches of the coherent reactor neutrino scattering. We find that the existing experiments cover new parameter space on the spin-dependent interaction between dark matter and the nucleon. Similar experiments performed with research reactors, and lesser amount of shielding, may provide additional sensitivity to strongly-interacting dark matter. 
    more » « less
  6. Abstract A sub-component of dark matter with a short collision length compared to a planetary size leads to efficient accumulation of dark matter in astrophysical bodies. We analyze possible neutrino signals from the annihilation of such dark matter and conclude that in the optically thick regime for dark matter capture, the Earth provides the largest neutrino flux. Using the results of the existing searches, we consider two scenarios for the neutrino flux, from stopped mesons and prompt higher-energy neutrinos. In both cases we exclude some previously unexplored parts of the parameter space (dark matter mass, its abundance, and the scattering cross section on nuclei) by recasting the existing neutrino searches. 
    more » « less
  7. The neutrinos in the diffuse supernova neutrino background (DSNB) travel over cosmological distances and this provides them with an excellent opportunity to interact with dark relics. We show that a cosmologically significant relic population of keV-mass sterile neutrinos with strong self-interactions could imprint their presence in the DSNB. The signatures of the self-interactions would be “dips” in the otherwise smooth DSNB spectrum. Upcoming large-scale neutrino detectors, for example Hyper-Kamiokande, have a good chance of detecting the DSNB and these dips. If no dips are detected, this method serves as an independent constraint on the sterile neutrino self-interaction strength and mixing with active neutrinos. We show that relic sterile neutrino parameters that evade x-ray and structure bounds may nevertheless be testable by future detectors like TRISTAN, but may also produce dips in the DSNB which could be detectable. Such a detection would suggest the existence of a cosmologically significant, strongly self-interacting sterile neutrino background, likely embedded in a richer dark sector. 
    more » « less
  8. NA (Ed.)